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Goal-conditioned Skill Learning
Goal

?!

No goal

does goal-conditioning help robots?

2



Variability in skill
Perceptual Variations Dynamical Variations

scene light

shadow noise

mass, friction 

geometries 

speed of execution

Counteract these factors of variation using structure!

vary configuration 

goal location
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a robot acting loop policy learning loop

Recap
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Overview

1. Goal-conditioned Policy Learning (goals as input to policy)
- Residual Learning from Demonstration: Adapting DMPs for Contact-rich Manipulation, RA:L and ICRA 2022
- Wish you were here: Hindsight Goal Selection for Long-Horizon Dexterous Manipulation, ICLR 2022

2. Goal-conditioned Reward Learning (goals as input to rewards)
- Model-Based Inverse Reinforcement Learning from Visual Demonstrations, CoRL 2020
- Learning Time-Invariant Reward Functions through Model-Based Inverse Reinforcement Learning, Under review

3. Other directions (if time permits)
- Learning Structured Representations of Spatial and Interactive Dynamics for Trajectory Prediction in Crowded Scenes, RA-L 2021
- An Empirical Evaluation of Adversarial Robustness under Transfer Learning, ICML 2019, Workshop on Improving Generalization
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Robot Learning for Contact-rich Manipulation

Objective:

- adapt knowledge to environmental changes 
- account for model imperfections; 
- long-term: enable sample-efficient lifelong learning of 
manipulation-based skills that can scale to complex 
sequential settings.
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Residual Learning from Demonstration

Objective:

- Robust and safe policies

- Sample efficient learning

- relax the need for model re-training in new environments

- enable fast adaptation to unseen tasks
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Tasks
Peg Insertion

- dependent on position of end 
effector

Gear Insertion

- requires precise orientation
- strong downwards push

RJ-45 Insertion

- requires precise position and orientation
- refined force control
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Learn from 
Demonstration

1. Record a Demonstration
2. Extract a policy
3. Execute from any 

start/goal
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Learning from 
Demonstration
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Learning from 
Demonstration
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Learning from 
Demonstration

Translational DMP

Ijspeert, Auke Jan, et al. "Dynamical movement primitives: 
learning attractor models for motor behaviors." Neural 
computation 25.2 (2013): 328-373. 12



Learning from 
Demonstration

Translational DMP
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Small changes can be fatal

Model the world is hard
Rote Imitation
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Learning from 
Demonstration

Translational DMP
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Learning from 
Demonstration

Translational DMP

Ude, A., Nemec, B., Petrić, T. and Morimoto, J., 2014, 
May. Orientation in cartesian space dynamic movement 
primitives. In 2014 IEEE International Conference on 
Robotics and Automation (ICRA) (pp. 2997-3004).
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Better but not ideal
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Residual Learning 
from Demonstration

T. Davchev, K. Luck, M. Burke, F. Meier, S. Schaal, S. 
Ramamoorthy, "Residual Learning from Demonstration: 
Adapting DMPs for Contact-rich Manipulation," in IEEE 
Robotics and Automation Letters 18



Adapting the DMP Formulation

DMP on Archimedian SplineCorrecting the Coupling term of the DMP formulationCorrecting the weights of the DMP formulationCorrecting at task space
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Adapting DMPs

A B C D task
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Gentle to the 
joints?

How much force on average 
would all joints experience?
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Physical Tasks

Lan Cable Insertion

● Smaller Hole
● Force Dependent

Peg insertion

● Challenging World
● External Biases

Gear insertion

● Orientation dependent
● Tighter Hole

22



Full pose corrections 
in the real world
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Transfer residual policies across tasks

Gear RJ-45

rLfD allows for successful policy transfer on both tasks, 
requires 8 times less training!
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Residual Learning 
from 
Demonstration
(Key observations)

● a framework for residual full pose corrections

1x speed

● more robust and sample efficient than 
adapting DMP parameters directly;

● adapt to world changes efficiently and 
online;

● a less forceful solution than alternative schemes;
● Transfer residual policy across different tasks.

Link to paper: https://arxiv.org/abs/2008.07682 25

https://arxiv.org/abs/2008.07682


Self-supervised RL

- handle long-horizon complex sequential tasks

- scale to harder contact-rich tasks

Davchev, T., Sushkov, O., Regli, J.B., Schaal, S., Aytar, Y., Wulfmeier, M. and Scholz, J., 2021. Wish you were here: Hindsight Goal Selection for 
long-horizon dexterous manipulation. ICLR 2022

- maintain few-shot properties remain sample efficient;
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Solving Complex Sequential Tasks with Sparse Rewards 
can be Hard!

● # narrow passage phases
● Reduced access to positive signal
● Extracting useful state/goal representations is non-trivial
● Larger sample requirements results in wear and tear
● Broadly, an exciting exploration challenge
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Dealing with redundant data: task-constrained distribution
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goal

start

t

Task demo

new goal

agent rollout

-> (s_t, a, s_t+1, r(s_t), goal)

-> (s_t, a, s_t+1, r(s_t, new goal), new goal)

Learning from raw states

● Impractical in high D spaces
Instead use encoder ψ

● Encode to low dimensional 
latent space

● Explicitly encode a notion of 
progress

● Utilise engineered and learnt 
time-consistent representations



Private & Confidential
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Hindsight Goal Selection for Demo-Driven RL (HinDRL)

Policy



Applying HinDRL on long-horizon sequential tasks

30

* Using an encoder from engineered features



Few-shot Task Performance: Dependency on demonstrations
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Full Insertion



Hindsight Goal Selection for 
Demo-driven RL 
(Key observations)

● A strategy for hindsight goal selection using demonstrations and distance-based gc reward
● A framework for task-constrained goal-conditioned RL
● That can successfully solve long-horizon dexterous manipulation tasks; and
● Works consistently and sample efficiently in challenging few-shot settings
● Robust towards using both engineered and learnt time-consistent representations

32
Link to paper: https://arxiv.org/pdf/2112.00597.pdf

https://arxiv.org/pdf/2112.00597.pdf


Quick Recap

33

agent rollout

Base

(Optional)
GC- RL

Controller

Replay Buffer

s_t, a_t, s_t+1, r(s_t), g

Demos

s_t, a_t, s_t+1, r(s_t, new_goal) ng 

r(s_t) -> Environmental Reward

r(s_t, new_goal) -> Euclidean Distance



Learning-to-learn Rewards

Das, N., Bechtle S., Davchev T., Jayaraman D., Rai A., and Meier F., 2020. Model-based inverse reinforcement learning from visual 
demonstrations. CoRL 2020
Davchev, T., Bechtle, S., Ramamoorthy, S. and Meier, F., 2021. Learning Time-Invariant Reward Functions through Model-Based Inverse 
Reinforcement Learning. arXiv preprint arXiv:2107.03186.

- we need more powerful reward functions;
- ideally, we should learnt them;
- combining meta learning with reward learning can 
help;
- learn from visual demonstrations
- learn time-invariant rewards
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Inverse Reinforcement Learning (IRL)

SynthesiseExtract Actions

IRL
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Cost Policy



Goal: Learn Manipulation from Demonstrations via 
Model-based Inverse Reinforcement Learning
Step 1: learn cost function from (visual) demonstrations
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Cost 
C𝜓* 

learn  from (visual)
demonstration
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action
PolicyCost 

C𝜓* 
learn  from (visual)

demonstration
Minimize

Goal: Learn Manipulation from Demonstrations via 
Model-based Inverse Reinforcement Learning
Step 2: reproduce behaviour by optimising actions wrt the learned cost



joint state

initu0

Minimizepredicted
joint state

. . .
predicted
joint state

predicted
keypoints

predicted
keypoints

goal
keypoints

Cost 
C𝜓* 

Initial 
Position

Goal 
Position

initut-1

key points 

KEYPOINT DETECTORKEYPOINT DYNAMICS

ACTION OPTIMIZATION

38

Optimising Actions via Visual MPC



joint state

initu0

Minimizepredicted
joint state

. . .
predicted
joint state

predicted
keypoints

predicted
keypoints

goal
keypoints

Cost 
C𝜓* 

Initial 
Position

Goal 
Position

initut-1

key points 

ACTION OPTIMIZATION

. . .optu0
optut-1
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Action Optimisation



Cost 
C𝜓* 

action(Visual) learn from 
demonstration

Minimize
Policy
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IRL Overview: How to learn the cost function



Inner Loop: optimize actions optu by minimizing the cost C𝜓 through a gradient update

Outer Loop: Update the cost parameters 𝜓, by minimizing the distance between the demonstration and the 
trajectory 𝝉 resulting from executing optu 

BI-LEVEL OPTIMIZATION FRAMEWORK

∇𝝍optu
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IRL Overview: How to learn the cost function



42

IRL Overview: Cost function Representation
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Results: Placing objects via Learned Cost

Human Demo



Human Demo
Test Case 1 - Starting Point 1

Test Case 2 - Starting Point 2

Human Demo - 
Starting Point
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Results: Placing objects via Learned Cost



Human Demo

Default 
(Test 1)

RBF 
(Test 1)

TimeDep 
(Test 1)

Weighted 
(Test 1)

Weighted 
(Test 1)
Default 
(Test 1)

TimeDep 
(Test 1)

RBF 
(Test 1)Shown in the 

Paper
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Human Demo

Default 
(Test 2)

RBF 
(Test 2)

TimeDep 
(Test 2)

Weighted 
(Test 2)

Default 
(Test 2)

TimeDep 
(Test 2)

Not Shown in 
the Paper
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Model-based Inverse Reinforcement 
Learning from Visual Demonstrations   
(Key observations)

● gradient-based IRL framework that learns cost function from visual human demonstrations
● learn a compact keypoint-based image representation and train visual dynamics in that latent space
● learn different cost functions using our gradient-based IRL algorithm 
● show that RBF weighted rewards perform best

47Link to paper: https://arxiv.org/pdf/2010.09034.pdf



Motivation

Misaligned 
Demonstrations

Vary 
Execution Speed

IRL
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Tasks

object placement
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peg in hole



Practical Example

Reward

IRL

Basic structured Cost

However

1

2

3

4
5
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Time-invariance approach

Reward

IRL

Unstructured Time-invariant cost avg. demo duration

desired duration51

Structured Time-invariant cost



Evaluation
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Learning Time-invariant Rewards 
with Model-based IRL    
(Key observations)

● a temporal scaling mechanism for learning both time-invariant 
reward functions;

● learning from temporally misaligned demonstrations that can scale 
to different speeds;

● extensive comparison of the generalisation abilities of both 
structured and unstructured reward functions.

53Link to paper: https://arxiv.org/abs/2107.03186



Private & ConfidentialSummary

Goal-conditioned RL

Policy Learning Reward Learning

Time-invariant 
RewardsResidual Policy Hindsight Replay Visual Demonstrations

Representation Learning
54
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LfD with informed 
representations

55

● fusing vision and force, e.g. using contrastive 
learning for imitation

● meta-learning for model-free LfD

Scale our policies to multi-task 
settings

● utilise meta-learning for task-conditioned RL
● maintain multiple demo datasets and rewards

Potentially exciting directions...



Future

email: t.davchev@gmail.com

Thank you!

56

- objective: enable robots to pick up skills similar to how humans do

- vision: enable sample-efficient lifelong learning of manipulation-based 
skills that can scale to complex sequential settings.

- next: the role of goal-conditioned RL for contact-rich manipulation;

       - scale to multi-task settings (i.e. lifelong learning);

       - utilise vision and touch for goal conditioned policy learning;

       - learn more informed goal-conditioned reward functions

- e.g., NIST challenge

mailto:t.davchev@gmail.com


What are the 
Challenges

➔ adapt to world changes

➔ adapt to model imperfections
➔ generalise to new settings

➔ learn safe and efficient 
policies
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Dynamic Movement Primitives (recap)

start goal

Ijspeert, Auke Jan, et al. "Dynamical movement primitives: learning attractor models for motor behaviors." Neural computation 25.2 (2013): 328-373.

spring

release
goal
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Dynamic Movement Primitives (recap)

goal

Ijspeert, Auke Jan, et al. "Dynamical movement primitives: learning attractor models for motor behaviors." Neural computation 25.2 (2013): 328-373.

? start goal

f⍵

f⍵ f⍵

f⍵

f⍵

f⍵
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Dynamic Movement Primitives (recap)

goal

Ijspeert, Auke Jan, et al. "Dynamical movement primitives: learning attractor models for motor behaviors." Neural computation 25.2 (2013): 328-373.

? start goal

f⍵

f⍵ f⍵

f⍵

f⍵

f⍵

Learn from Demonstration!
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Reformulate in Quaternion (recap)

Ude, A., Nemec, B., Petrić, T. and Morimoto, J., 2014, May. Orientation in cartesian space dynamic movement primitives. In 2014 IEEE 
International Conference on Robotics and Automation (ICRA) (pp. 2997-3004). IEEE.

start goal
Orientation is not Commutative!

start goal

start goal
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Residual Pose Corrections

Position Orientation

Base policy Residual policy

BUT: quaternions are hypercomplex numbers!
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Residual 
Orientation 
Corrections

Easier to learn for a 
policy!

Grubin, C., 1970. Derivation of the quaternion scheme via the Euler axis and angle. Journal of Spacecraft and Rockets, 7(10), pp.1261-1263.63



Residual Pose Corrections

Position Orientation
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Gentle to the 
joints?

How much force on average 
would all joints experience?
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Do we really need nonlinear policies?

66



RL in task space
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Private & ConfidentialTime-consistent Representations
Engineering ψ:

- notion of progress - distance from target goal
- notion of contact - insertion was successful

Not Cycle Consistent!

Cycle consistency
error

Cycle Consistent

Encoder
 . . .

Encoder
 . . .

Embedding  space

Episode 2

Episode 1

[1] Dwibedi, D. et al. 2019. Temporal cycle-consistency learning.

Learning ψ:
- Self-supervised learnt representation 
- Directly used with provided demonstrations
- Refined over time 
- Consistent + aligned notion of progress without labels 
- Employ cycle consistency loss [1]
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Private & ConfidentialGoal-conditioned Distributional Policy Gradient from Demos

𝝅
(s,g)

Demos {s,a,s’}
a -> 6D Velocity + Binary Gripper 

Replay
Buffer

Goal
db

ℒ + ℒBC AC

ℒ  = Regression + CE  BC

ℒ  = DPG + SVG + L2  AC

*Gumbel softmax trick for binary gripper

c
(s,g)

ℒ TD

ℒ  = Distributional Critic + L2TD

[1] Silver, D. et al. Deterministic policy gradient algorithms, ICML 2014
[2] Heess, N.et al. Learning continuous control policies by stochastic value gradients, NeurIPS 2015
[3] Jang, E. et al. Categorical reparameterization with gumbel-softmax, ICLR 2016
[4] Bellemare, M.G. et al. A distributional perspective on reinforcement learning, ICML 2017
[5] Vecerik, M. et al. A practical approach to insertion with variable socket position using deep reinforcement learning, ICRA 2019
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Private & ConfidentialDistance-based Reward Specification

Utilise local smoothness of the representation space

Distance-based goal conditioned reward function

Encoded state
Encoded goal Threshold obtained 

from demos

t-SNE visualisation of a temporally aligned representation 
space learnt with TCC

- Consistent notion of progress across 100 trajectories
- Can align != in length and motion trajectories that pass 

through similar stages
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Private & ConfidentialConstraining the self-supervision process

target

start

t

task relevant goalsTask demo

What benefits can we get from 
using task specific relabelling?

● Focus on targeted goals from 
demos

● Focus on feasible and relevant 
goals only

● Maintain benefits from HER

New goal ~ p(goal | agent rollout, task demo)

agent rollout
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Experimental Evaluation

● Reach + Grasp + Lift
● Reach + Grasp + Lift + Align
● Full Insertion

72

● Simple parameterised reach



Private & Confidential

Bimanual Insertion

Few-shot tasks Performance: dependency over demonstration 

Bring Near + Orient

HinDRL consistently works better than all baselines and is less 
dependent on the number of demonstrations used.
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Private & ConfidentialRobustness to the quality of the encoder
- State representations useful as input but also during relabelling for gc-reward.
- But access to near perfect representations is not always feasible
- Study sensitivity of the solution to the quality of the encoder.

Notion of progress is central to the success of HinDRL! 
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Training the keypoint detector 

joint state

initu0

key points 

Minimizepredicted
joint state

. . .
predicted
joint state

predicted
keypoints

predicted
keypoints

goal
keypoints

Cost 
C𝜓* 

Initial 
Position

Goal 
Position

initut-1

KEYPOINT DETECTOR

Training Data Keypoints detected on 
training data
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feature maps Original DETECTOR gaussian maps  RE-CONST
RUCTOR

Reconstr
ucted  

feature maps DETECTOR

key points 

Training the keypoint detector - Framework

   

Minderer et al. Unsupervised learning of object structure and dynamics from videos. In Advances in Neural Information Processing Systems, pages 92–102, 2019. 

AUTOENCODERBOTTLENECK
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Training the Dynamics Model

joint state

initu0

Minimizepredicted
joint state

. . .
predicted
joint state

predicted
keypoints

predicted
keypoints

goal
keypoints

Cost 
C𝜓* 

Initial 
Position

Goal 
Position

initut-1

key points 

KEYPOINT DETECTORKEYPOINT DYNAMICS

         is an MLP with 2 linear layers with ReLu 
activations, containing 100 and 25 neurons respectively
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Optimizing Actions via Visual MPC

joint state

initu0

Minimizepredicted
joint state

. . .
predicted
joint state

predicted
keypoints

predicted
keypoints

goal
keypoints

Cost 
C𝜓* 

Initial 
Position

Goal 
Position

initut-1

key points 

KEYPOINT DETECTORKEYPOINT DYNAMICS

ACTION OPTIMIZATION
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Evaluation

Tasks varied by:
● the execution speed
● distance to goal
● Total of 30 different tasks

Meta-training:
● three different training routines
● report distance from desired / target speed

Fixed speed and mixed goals (standard)
Mixed speed but fixed goals
Mixed speed and mixed goals 79



Evaluation (meta test) 
Overall Performance:

● Trained on misaligned demonstrations 
○ (3 and 5 second executions)
○ demo goals sampled up to 1cm away 

● vary tasks in terms of speed / goal location
○ 2-6 second long executions
○ goals sampled up to 5cm away
○ measure task success
○ measure distance to target speed
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Evaluation (meta test)
Generalizing to different goals:

● assume fixed center of the goal distribution
● training data sampled within 1cm away from center
● evaluated on new goals sampled from up to 5 cm away
● goals sampled 1-3 or 3-5 cm away are out of the training distribution
● within 1cm are in-training
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